
Guidelines for Responsible 
Machine Learning

Guidelines

Exercise caution when control flows are modified 
based on the output of ML models.

Workflows that consume the output of a machine learning 
primitive can be modified to produce attack surfaces that

are difficult to secure. The current advice is that it is not 
advisable to ingest data into an execution workflow that is

not explicitly expected.

Avoid direct access to models and model metadata.

Direct interaction with machine learning primitives can lead to a 
number of different attack surfaces; exfiltration, inversion and 
others. Keep these objects away from users and allow controlled, 
approved-only interactions, and ensure output is attached to an 
established feature - like a database. Do not provide output 
directly to the user.

Ensure that models use integrity checking on both 
training and post-implementation.

Modifications to software can occur along multiple stages within 
the build and deployment pipeline; the same is true for machine 
learning. Check, and then check again. Only run what you know is 
expected: Authenticate before you operate.

Complexity of features may produce complexity

of controls.

Keep interactions brief, to the point and succinct. Large, complex 
workflows represent much greater risks of exposure in terms of 
successful attacks.

Start with extensional logic for training, and move to 
intensional logic for features and inference, where 
needed.

Using a vetted, well-known good set for training is a good way to 
avoid data poisoning and other attacks. However, to create 
features that have greater inference capabilities, new data must 
be ingested; testing the results of this training carefully based on 
expected outcomes from known good input results in more 
resilient systems.

Ensure integration testing is created along the 
intended use-case of the primitive.

Machine learning workflows require integration and unit testing 
like any other software. The heuristic nature of ML software can 
make it difficult to build reliable assertions, so it’s recommended 
to focus on the desired, long-term outcomes of the workflow.

Look for attacks that use machine synthesis, 
particularly around controls that focus on ‘what-
you-are’.

Always ask ‘Can a machine do this, now?’ before making 
assumptions on authenticity of voice, video and text -- 
particularly when used to provide access rights.

Use mutual policies to keep ahead of the economic 
model and ensure a strong, low-cost security model.

If the cost of an attack is lower than the cost of its subsequent 
remediation, the control is likely to be ineffective. Operationalise 
security costs to adjust automatically based on the impact of 
successful attacks to gradually increasing costs on attacker.



Avoid placing models trained on proprietary data in 
control of the user, such as on a device.

Consider the use-case involved in creating the machine learning 
primitive and assume, in theory, that the training data that 
created it can be recovered. Use this for business continuity 
planning and risk assessments when developing products.

Use rate limiting to avoid extrapolation attacks and 
prevent unnecessary resource consumption.

Traditional controls are still largely effective; layer controls such 
as access control lists, rate limiting and authentication when 
designing and implementing machine learning technologies.


