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Abstract: Modern Reinforcement Learning (RL) algorithms promise to solve dif-
ficult motor control problems directly from raw sensory inputs. Their attraction
is due in part to the fact that they can represent a general class of methods that
allow to learn a solution with a reasonably set reward and minimal prior knowl-
edge, even in situations where it is difficult or expensive for a human expert. For
RL to truly make good on this promise, however, we need algorithms and learn-
ing setups that can work across a broad range of problems with minimal problem
specific adjustments or engineering. In this paper, we study this idea of general-
ity in the locomotion domain. We develop a learning framework that can learn
sophisticated locomotion behavior for a wide spectrum of legged robots, such as
bipeds, tripeds, quadrupeds and hexapods, including wheeled variants. Our learn-
ing framework relies on a data-efficient, off-policy multi-task RL algorithm and
a small set of reward functions that are semantically identical across robots. To
underline the general applicability of the method, we keep the hyper-parameter
settings and reward definitions constant across experiments and rely exclusively
on on-board sensing. For nine different types of robots, including a real-world
quadruped robot, we demonstrate that the same algorithm can rapidly learn di-
verse and reusable locomotion skills without any platform specific adjustments
or additional instrumentation of the learning setup. (Supplementary video avail-
able.1)

1 Introduction

Robots with legs and hybrid leg-wheel configurations are rapidly gaining popularity as mobile
helpers with the potential to navigate challenging, human-built environments. The control of such
platforms is a well studied engineering and research problem and the last two decades have seen
impressive demonstrations of robot locomotion, with solutions excelling both in speed and robust-
ness [1, 2, 3, 4]. Despite these successes, however, approaches used by classical control engineers
and roboticists usually require detailed understanding of and specialization to the platform at hand.
Learning based approaches to control, especially Reinforcement Learning (RL) algorithms, have
made much progress in the last few years [5, 6, 7, 8]. They hold the promise of solving challenging
motor control problems directly from raw sensory inputs, optimizing the perception-action pipeline
end-to-end. In particular, they can be a general paradigm that allows us to learn a solution, even if
it were difficult or expensive for a human expert, with a well-defined goal but minimal prior knowl-
edge. However, in order for RL to really keep this promise, we need algorithms and learning setups

1https://youtu.be/7V0-oj3b5I4
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that can function across a wide range of problems with minimal problem-specific adjustments or de-
sign. Although the data-efficiency and robustness of RL algorithms has much improved, significant
task-specific effort is still required for algorithm tuning, reward design and providing specific hard-
and software for reward calculation. This can make the success of learning experiments highly
dependent on the availability of RL expert knowledge and limit them to carefully controlled lab
settings. Our learning framework relies on a data-efficient multi-task RL algorithm [6]. With a
small set of reward functions that are semantically simple and, above all, identical across robots,
we show that we can learn sophisticated locomotion behavior for a wide range of robots such as
bipeds, tripeds, quadrupeds and hexapods, including wheeled variants. We demonstrate that in our
learning framework, the same RL agent, with a single setting of hyperparameters and the same set
of reward functions, can learn diverse and reusable locomotion skills for 9 different types of robots.
The framework is sufficiently data efficient to enable learning directly on a real-world quadruped
without any adjustments. Although the reward semantics are identical across robots the resulting
control policies vary significantly in line with the highly diverse dynamic properties of the plat-
forms. Importantly, as it relies exclusively on on-board sensing it does not require any additional
instrumentation of the learning setup, neither for state estimation for the controller nor for reward
calculation, thus enabling learning experiments beyond a controlled lab setting.

Our results are complementary to other recent results on learning locomotion such as those of [5, 9,
10], which focus primarily on data-efficiency, robustness of the resulting gaits, or the autonomy of
the learning process. Our work also addresses these points but specifically emphasizes the generality
and robustness of the learning framework. Beyond locomotion, and in combination with the results
of [6, 11] the results in the present paper provide another small piece of evidence that the grand
vision of general, autonomous robot learning may not be entirely beyond reach.

2 Preliminaries

The goal of this paper is to study the generality of learning techniques and we thus want to evaluate
our learning framework on a diverse set of robot platforms. To reduce the effort, we will mainly work
with platforms that are simulated as true to the original as possible. Unfortunately, even creating and
validating a large number of independent simulation models requires a lot of work. We therefore
rely on a modular hardware system which allows to construct different robot models from a small
number of hardware building blocks. Rather than performing system identification for each robot
model separately, we can then identify the properties of the hardware modules in isolation and use
these well-calibrated simulation components to build a large number of realistic models with very
different morphologies and dynamic properties. Obtaining a good alignment between the learning
results in the simulation and the actual hardware on a small number of models can give us some
confidence that the results in the simulation are meaningful for other models as well.

HEBI Robotics (www.hebirobotics.com) is a provider of a modular hardware system for robotics.
The system is built around series elastic actuator modules that are available with different nominal
speed and torque ratings. The series elastic elements allow for accurate torque control and protect
the motor from strong impacts. The modules have a rich set of sensors built in: encoders for the
motor and the output shaft, temperature sensors, a 3 axis accelerometer, as well as a 3 axis gyroscope
(including on board orientation estimation). A low level controller, consisting of integrated control
and power electronics, implements different control modes and safety mechanisms, and processes
sensor information. In combination with accessories such as brackets and tubes, the modules allow
building a wide variety of different robots, including (but not limited to) legged robots. An attractive
feature of the system is that we have access to all relevant state variables used for low-level control
(actuator position, velocity, deflection, deflection velocity, torque, motor temperature, etc.). In Fig
1b and 1a two existing walker topologies are shown. As Florence is currently only available as a
prototype we use the Daisy kit for evaluation of our learning framework in real-world experiments.

For our investigations, we have developed a MuJoCo [12] based simulation of these building blocks.
In our simulation we attempt to faithfully reflect the modularity as well as the kinematic and dynamic
properties of the system. The latter include not only the properties of the motor, gearbox and serial
elastic element, but also the firmware safety features, temperature models and overheating effects.
We implemented 7 basic robot models with different morphologies and dynamic properties. An
overview can be seen in Fig 1c to 1i).
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(a) Real Daisy. (b) Real Flo-
rence.

(c) Daisy3 (d) Daisy4 (e) Daisy6

(f) Dog (g) Florence (h) Flori (i) FloriArms (j) Real Daisy4

Figure 1: Real and simulated creatures built using the HEBI system.

Fig 1e shows the Daisy hexapod (Daisy6) in the configuration of the original kit. It has two degrees
of freedom in each shoulder and one additional in each elbow, resulting in 18 active degrees of
freedom. By removing two legs, we get a more challenging to control quadruped robot (Daisy4,
see Fig 1d), with 12 active degrees of freedom. It is notable that for a human engineer, these two
topologies already differ in important dynamical aspects: e.g. only the hexapod allows for a simple
bipartite statically stable gait [13]. To have non-optimal, but still somehow feasible, kinematics,
we can remove another leg to get a three legged version of the Daisy (Daisy3, see Fig 1c), with
nine active degrees of freedom (which is very difficult to control with standard methods since it will
almost inevitably have to rely on friction dynamics).

We also modeled a mammalian leg configuration (see Fig 1f), by changing the orientation of the
shoulders and adapting slightly the lengths of the upper and lower legs. This assembly has the same
number of active degrees of freedom as Daisy4, but strongly differs in forward kinematics and joint
torque loads (it is usually less strenuous for the shoulder joints).

Another important class of robots for locomotion are bipedal robots. Fig 1g shows a simulation
model of HEBI Florence. Florence has three active degrees of freedom in each hip, one degree
of freedom in the knee and two degrees of freedom in each ankle. It further has long upper and
lower leg segments and starts with a backward flexed knee to prevent operation close to kinematic
singularities and to make balancing easier. While the latter are design choices that were made with
engineered control solutions in mind, we also designed a more human like version of the Florence -
that we call Flori (see Fig 1h) - with the same number of active degrees of freedom but different leg
configurations. To have a rudimentary example for additional limbs, we also added a Flori version
with two arms adding two additional degrees of freedom for each of them (FloriArms, see Fig 1i).

3 A General Framework for Learning Core Locomotion Skills

Our long-term goal is the development of a general and autonomous learning framework. ‘General’
means that the same framework with minimal modifications can be applied across a broad range of
different platforms. ‘Autonomous’ means, that our system is able to learn with minimal external
infrastructure and assistance. In the present work, we focus on general proprioceptive rewards,
relying only on on-board sensing, thereby reducing reliance on external sensors, and other elaborate
lab settings.

Many contemporary applications of RL require careful, task-specific engineering of the rewards
together with expensive additional hardware such as motion capture systems, to enable reward com-
putation. This can make learning experiments expensive and often restricts them to specialized
laboratories. Reducing this dependency both for acting and learning will increase the applicability
of mobile robots, and, importantly, dramatically simplify the setup of learning experiments, enabling
learning and adaptation to proceed after deployment.
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Rather than relying on pre-processed position or velocity information from a separate state estima-
tion system, we train agents to act directly from raw sensor values. We further demonstrate how a
set of primitive rewards for locomotion can be derived directly from the same on-board sensors also
used for acting, and how these rewards can be used to learn diverse and robust locomotion skills.

3.1 Reward Computation for General Locomotion Topologies

Our learning framework relies on a diverse set of basic rewards. The combination of these rewards
enables learning a diverse set of locomotion skills which can subsequently help to learn more com-
plex behaviors. The rewards are defined such that they can be computed from limited on-board
sensing comprising IMUs and joint encoders but require no contact sensing. To this end we draw on
heuristics to obtain rough estimates of helpful quantities such as egocentric velocity. The underlying
assumptions of these estimates do not hold at all times, but the agent has access to the full sensory
stream and is able to learn robust locomotion skills despite the potentially limited consistency of
the rewards. Assuming that the lowest foot is in contact with the ground and not slipping, we esti-
mate the linear velocity of the robot torso and the feet in a coordinate system that is simultaneously
aligned with the robots forward direction and gravity (motivated by [14], details see Appendix). To-
gether with the IMU gyroscope measurements in the torso, we can now define various rewards for
locomotion.

An important skill in locomotion is to learn to stand upright. We define the StandUpright reward
by keeping the robot torso leveled (reducing the roll and pitch angles) while keeping the torso linear
velocity and the torso angular rotation rate small. If we add a component for rewarding height
differences of a certain foot i w.r.t the lowest foot, we can define a reward function for standing
upright and lifting a certain foot: LiftFooti. For doing actual locomotion, we can modify the stand
upright reward by rewarding rotational velocities around the torso z axis to get a Turn reward and
reward translational velocities of the torso and the feet to get a Walk reward. While we could have
rewards for different velocities, we picked rewards to maximize discrete instances of these rewards
for this paper. In consequence we define six distinct locomotion skill rewards: TurnLeft, TurnRight,
WalkForward, WalkBackward, WalkLeft and WalkRight, as well as the LiftFoot for all feet for each
creature (for details, see Appendix).

3.2 Action and Observation Space

The actuation modules offer multiple control modes, including position control, velocity control,
torque control and PWM direct control mode. In principle, our learning methods should be able
to cope with all of these modes and will learn to make use of them. While each of the modes has
its own pros and cons, we picked the position control mode using a low-gain P-controller. The
main advantage of the position control mode is that we can enforce certain limits of the joint angles
during the execution of our agent while it can still regulate forces indirectly by choosing appropriate
position set-points. As an additional safety mechanism, we use a sliding window filter with a width
of ν steps for the set-point that is sent to the actuation modules. In consequence, we have an action
space where each of the used modules adds one dimension of continuous actions that is bounded by
the allowed position set-point for that individual joint.

For a robot that is built from multiple actuator modules, the observation space consists of observa-
tions associated with the individual modules, as well as observations from the torso. For a default
filter window of width ν = 5, this adds up to a 11 dimensional observation for each of the actuation
modules, containing the position and velocity of the joint and elastic element, temperatures and filter
state. For the torso observations, we stack measurements of h consecutive time frames to allow the
agent to have richer information about the state. As we only use robo-centric measurements, we pro-
vide the roll and pitch estimate together with the feet reference points and the measurements of the
gyro. Consequently, the range of dimensionality of the action and observation spaces we investigate
here ranges from 9 action dimensions with 127 observation dimensions for Daisy3 up to 18 action
dimensions for Daisy6 and 282 observation dimensions for FloriArms (details, see Appendix).

3.3 Multi-Task Training of a Locomotion Module

In general, we aim for a capable locomotion module, that can not only solve one task, but is able to
perform multiple tasks. This makes the motion module not only more versatile, we also expect syn-
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ergies across tasks that will improve data-efficiency in this multi-task learning setting. To this end,
we apply the Scheduled Auxiliary Control (SAC-X) [6] framework to the domain of locomotion.
The core idea of SAC-X is that we can learn multiple tasks in parallel, switching between different
tasks during each episode, and sharing data across tasks for learning. This framework has three
potential advantages: (1) switching between tasks forces the agent to visit different parts of the state
space and can thus improve exploration (and in consequence data-efficiency); (2) switching between
tasks can also improve robustness of policies since behaviors are initiated in a more diverse set of
states; (3) sharing data across tasks via off-policy learning can further improve data-efficiency. We
expect the resulting controller module to provide a sound basis of finely tuned movement skills that
eventually also allow to achieve more high-level goals.

4 Experiments

To investigate the framework outlined in the previous section we conduct a case study that focuses on
a set of basic locomotion skills StandUpright, LiftFoot, TurnLeft, TurnRight, WalkLeft, WalkRight,
WalkForward, WalkBackward (see 3.1; note that additional rewards could be easily defined fol-
lowing the same approach). We use the off-policy RL algorithm used in [6], using the very same
hyper-parameters that were also used in other domains like manipulation. In each episode the robot
starts with all actuators in the default position, feet touching the ground (see Fig 1e to 1g). We
run each episode for 800 steps with a control time step duration of 25 ms, which yields episodes
of 20 seconds length. We are interested in applying our approach directly on a real robot platform.
Our main interest therefore is data-efficiency which we measure by counting the episodes that were
required to learn the behaviour(s) (details, see Appendix). This gives us a good estimate of whether
learning the tasks has reached a level of efficiency such that it could be trained in the real world.

4.1 Individual Skills

We first investigate the plausibility of our reward definition in a singe-task setting. As Table 1 shows,
we can learn the individual locomotion skills on all platforms in a reasonable number of interaction
episodes. For instance, starting from a random policy we can successfully learn behaviours like
StandUpright for creatures like Daisy6, Daisy4 and Daisy3 in less than 20 interaction episodes. This
is equivalent to less than 7 minutes of interaction between the agent and the robot. Furthermore,
our results for the bipedal robots Florence, Flori and FloriArms show that the very same reward
definition can have a very different complexity depending on the configuration we apply it to. Since
the static stability of these creatures is strongly impeded by the reduced support polygons, the agent
needs to be much more careful when moving its center of mass. Still it can learn the task in less than
4h of interaction time (about 700 episodes) for all robots.

This is even more evident for LiftFoot: depending on the structure of the robot platform the same
reward definition results in tasks of varying difficulties and leads to very different solution strategies:
While we can learn to lift a certain foot for Daisy6, Daisy4 and Dog in less than 20 minutes of inter-
action time (about 50 episodes), the task is considerably harder for the bipedal robots. Nevertheless,
the very same agent and reward learns a balancing policy on one leg in about 5.6h of interaction
time (about 1000 episodes). These results highlight that the same simple reward definition can give

StandUpright LiftFoot1 TurnLeft WalkLeft WalkForward
Episodes Episodes Episodes Episodes Episodes Velocity

Daisy6 <20 60 120 180 170 0.59 m/s
Daisy4 <20 50 90 150 160 0.62 m/s

Dog 30 50 210 520 310 0.70 m/s
Daisy3 <20 N/A 420 250 240 0.01 m/s

Florence 650 1000 1100 1340 1200 1.20 m/s
Flori 710 1000 1220 1220 1120 1.45 m/s

FloriArms 700 320 1400 1210 1100 1.44 m/s

Table 1: Results for learning basic locomotion tasks on different walker platforms in a single-task
setting. Shown are the interaction episodes required to learn the task and the final velocity reached
for the Walk tasks.
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rise to very different behaviors. We get comparable results for TurnLeft and TurnRight, as all of
our creatures are symmetric. For Daisy4 and Daisy6 these tasks are considerably more difficult
than StandUpright and LiftFoot and the amount of interaction data that is required to learn the skills
roughly doubles. For Walk we can learn a reasonable fast solution for Daisy6 and Daisy4 in about
an hour of interaction time. The resulting gait looks highly symmetric even though we do not di-
rectly encourage this in the reward. Interestingly, the agent also finds a very good gait for the bipeds
Florence, Flori and FloriArms in about 7.5h of interaction time (about 1200 episodes). This walking
gait looks not only very symmetric but also very dynamic. The learned walking gait for WalkLeft,
WalkRight, WalkForward and WalkBackward take a comparable amount of interaction episodes to
learn, but as can be seen in Table 1 vary widely in the achievable speed.

It is worth noting that we apply exactly the same reward function, agent and hyperparameters to
all robot platforms. The characteristics of the resulting behaviors, however, vary widely and are
naturally adapted to the morphology and dynamic properties of each platform, e.g. FloriArms learns
to use its arms for additional support while lifting a leg and to swing it’s arms in a very natural way
to keep balance while walking2.

4.2 Learning a Versatile Motor Module

To obtain a versatile motor module we would like to be able to learn a large number of locomotion
skills in parallel. Although learning many individual skills separately is feasible, it is not the most
data-efficient way to achieve this. Also, when learning skills separately we are not guaranteed to be
able to transition between skills. We therefore switch to the multi-task regime outlined in section 3.3
in which we switch between and share data across tasks [6]. We keep the basic learning algorithm,
parameters and the general learning setting from the previous sections. We consider three basic
task definitions: WalkForward, WalkBackward and StandUpright. In every episode we execute two
sequences of 10 seconds length each, giving a total episode length of 20 seconds as before. In each
sequence we randomly execute one of the three tasks to collect data (this corresponds to the SAC-U
version of the algorithm described in [6]).

For the quadrupeds and hexapod, we see a small increase in data-efficiency compared to the single-
task experiments. For example, we need 360 episodes in total for Daisy6 when learning each task in
a separate experiment, while we can learn all skills together in only 300 episodes in the multi-task
setting (results are comparable for Daisy4 and Dog). For the bipeds, the differences are much bigger.
For example we would need 3050 episodes for Florence to learn all skills separately, while we can
learn them in 1590 episodes in the multi-task setting. While this saves only roughly 20 minutes
of interaction time for the quadrupeds and hexapod, the savings amount to over 8h of interaction
time for the bipeds. Importantly, in the multi-task setting the agent also learns to transition between
WalkForward, WalkBackward and StandUpright without falling, which is a very challenging task
for itself for many control approaches.

4.3 Learning Higher Level Behaviours: Reaching a Target

Creature Baseline SAC-Q

Daisy6 >20k 840
Daisy4 >20k 800

Florence >20k 2000

Table 2: Interaction episodes for task
ReachTarget.

In the previous section we have demonstrated that the
multi-task regime allows us to learn multiple indi-
vidual skills more efficiently and robustly than when
learning separately. Many more complex tasks, how-
ever, cannot reasonably be learned in a single-task set-
ting at all. We now show that the training regime from
the previous section enables learning both locomotion
skills as well as more complex tasks that build on these
skills, including sparse reward tasks that would be hard
to learn otherwise. To this end we add a virtual target
to the environment that is randomly spawned in a certain range around the robot. We add a sparse
ReachTarget task to the set of training tasks for our locomotion module. The reward is zero when
the target is more than 50 cm away from the robot and one when the distance of the target and the
robot torso is zero. In each episode the target is spawned at a distance from 1 to 3 meters around the
robot.

2e.g. see supplementary video https://youtu.be/7V0-oj3b5I4
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As baseline we attempt to learn the task with only the ReachTarget reward and the default settings
of our agent. For all creatures this baseline fails to solve the task in the first 20k episodes. As a
comparison, we use our motion module in the multi-task setting together with 3 auxiliaries (Walk-
Forward, WalkBackward, StandUpright). As we can see in Table 2, we can learn all skills plus the
main task ReachTarget, in a reasonable time of about 5h (roughly 800 episodes) for the quadrupeds
and hexapods and about 12h of interaction time (roughly 2000 episodes) for the bipeds. In this ex-
periment, we assumed that we train all tasks from scratch, while in practice it would also be possible
to pre-train a set of skills and learn only the main task, which would make the motion module even
more powerful.

4.4 Robustness of Proprioceptive Reward Definitions

As discussed in section 3.1 the reward calculation is based on simplifying assumptions which
may not always hold true. While these may appear restrictive, we do not require them to
hold at every point in time in order to promote the emergence of sensible locomotion be-
haviors. To demonstrate that we can deal with violations of the assumptions and to under-
line the robustness of our approach, we conduct experiments in an expanded set of tasks.

(a) Rough terrain. (b) Passive skates.

Figure 2: Platforms in the robustness experiments.

In a first experiment, we let our creatures run
over uneven, tiled terrain and can observe
that learning for height differences of a few
centimeters still works successfully. More-
over we see that platforms with more legs can
overcome rougher terrain using the same re-
wards (e.g. see Fig 2a). In a different exper-
iment, we extend the 7 creatures by 2 more
and attach passive wheels to the feet of the
bipeds Florence and Flori. Running the same
experiments results in a completely different
locomotion pattern: dynamic skating (see Fig 2b, for more details, see Appendix).

5 Real-World Experiments

To verify the results obtained in simulation we conduct learning experiments ‘from scratch’ on an
actual HEBI robot. Instead of the original HEBI Daisy (Daisy6, see Fig 1a), we decided to run the
real world experiments on the more challenging quadruped Daisy4 that is shown in Fig 1j. We use
the same settings as in simulation (agent, rewards, methods, hyperparameters, etc.). From a control
perspective going to a real robot means that the agent now has to deal with additional time delays
and noise that makes the control problem more difficult. When we run the single-task experiments of
section 4.1, we initialize the robot in each episode to its default pose by a hand designed initialization
procedure. Afterwards we can start the episode in the same way as we do in simulation. While the
reset of the robot after an episode is not a problem in simulation, we allow more time in between
episodes to manually turn the robot around when it used up the available space.

To learn WalkForward in the real robot experiment, we need approximately 130 episodes, which is
even a bit less compared to the simulation experiments (160 episodes). While this corresponds to
approximately 40 minutes of pure interaction time, the full experiment (including resets) runs for
about 2h. The resulting walking gait is highly symmetric and achieves a speed of approximately 0.3
m/s. We further conduct a multi-task experiment in the real world with 6 different tasks: LiftFoot1,
LiftFoot2, LiftFoot3, LiftFoot4, WalkForward and WalkBackward. We use the same setting as in
section 4.2, but increase the sequence length to 20 seconds. Starting from a random initialisation, the
agent is able to learn all the tasks requiring only 225 episodes of robot interaction. This corresponds
to approximately 3h of pure interaction time, while the overall experiment (including resets) runs for
about 5h. This demonstrates that we can learn robust skills that allow for smooth transitions not just
in simulation but also on an actual robot in reasonable time from scratch. It further demonstrates that
another core feature of our simulation results holds true on the real robot: specifically, the multi-task
setup continues to provide us with increased data efficiency, as we would have to run 460 episodes
(10h) to learn all the skills in a single-task setting. Without multi-task training we would have had
to wait for additional 5h and would not have learned to transition between skills.
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6 Related Work

Legged locomotion has seen significant progress in the last couple of decades with increasingly
performing hardware and control approaches [1, 15, 16]. Optimal control approaches, partially im-
plemented as Model Predictive Control (MPC), have gained traction, especially combined with a
centroidal dynamics approximation which allows separating the problem into a high-level base mo-
tion controller and a low-level contact force controller [17, 18, 19]. But also whole-body approaches
have been successfully investigated by various research groups [20, 21]. These approaches can reach
an astonishing level of dynamics and agility [22].

On the other hand side in the last few years there has been a growing interest in learning locomo-
tion both in simulation and for real robots. In simulation, especially for simple robot models, basic
locomotion behavior can often be achieved with simple reward functions [e.g. 23]. More sophisti-
cated and diverse skills can be obtained through curricula and diverse training conditions (such as
different terrains) [7]. However, in general, such skills require carefully chosen shaping or penalty
terms [8] or constrained optimization [24] that in turn are time-consuming, may need an iterative
process [25] and are specific for a certain platform. However, in general, such skills often lack the
naturalness, efficiency, smoothness and other properties that would be essential for deployment on
actual robotics hardware. This can be mitigated through carefully chosen shaping or penalty terms
[8], or constrained optimization [24]. But designing regularization strategies that shape behaviors in
particular ways can be a time-consuming endeavor and may require an iterative process [25].

The results in this paper are also complementary to several recent demonstrations of successful
sim-to-real transfer of control policies for legged robots [8, 25, 26]. Although training in simulation
offers additional flexibility, successful transfer usually requires detailed knowledge of dynamic prop-
erties of the robot of interest to build sufficiently accurate simulation models or additional adaptation
of the learned control strategies on the actual hardware [27, 28, 29]. In some cases demonstrations,
e.g. from motion capture data [e.g. 30, 31] or other reference motions [25, 27] can be used to directly
constrain learned behavior. Yet, such data is not always easily available or may not easily transfer
to a particular robot body. Furthermore, composing reference behaviors in a flexible, goal-directed
manner can be challenging [e.g. 31, 30]. Our work uses a multi-task learning scheme taken from
[6, 11, 32] that employs several simple reward functions with minimal additional shaping terms to
obtain well regularized and robust behavior across a number of different bodies.

In some cases, locomotion skills learned in simulation can be transferred to corresponding robotic
hardware. This usually requires careful system identification and well matched simulation models
[8, 29, 25, 26]. Transfer can be further improved with additional adaptation of the learned control
strategies on the actual hardware [27, 28, 29]. Accurate simulation models can, however, be expen-
sive to develop, and some phenomena encountered in the real world (such as sophisticated terrain
properties) may be hard to simulate.

Recent improvements in the efficiency of learning algorithms has made it possible to learn loco-
motion skills directly on the robot. This has been pursued both with model-based [33], and with
model-free approaches [5, 29, 9] for quadrupeds [5, 29] and the HEBI Daisy robot which we are
considering here [9]. Similar to our work, [29, 9] learn multiple skills that can later be chained to
achieve goal directed behaviors. Learning on the hardware requires answering practical questions
related to safety, reset, and state-estimation e.g. to compute rewards. For the latter, prior work usu-
ally relies on external motion capture systems which can require significant effort to set up. We show
that sophisticated skills can be learned from simple rewards computed from on-board sensors only,
thus significantly reducing the complexity of the training setup. Furthermore, whereas prior work
usually targets a single robot platform, we investigate whether the same setup can be used across a
number of different robots.

Our use of multiple simple rewards derived from on-board sensing is closely related to the work of
[11] who use a similar scheme to solve difficult tasks with a robotic arm. It also bears similarity to a
number of papers who employ learned reward functions, for instance based on an empowerment ob-
jective, to discover reusable skills [34, 35, 36, 37, 34], including for legged robots [38]. Our reward
functions are hand-crafted, but nevertheless simple and transferable across body morphologies.
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7 Conclusion

We have investigated a framework for learning of core locomotion skills for general walker topolo-
gies and applied it to a diverse set of robots with very different morphologies and dynamic proper-
ties. We have demonstrated that the same set of reward functions and the same learning framework
(identical algorithm and hyperparameter settings) can successfully learn a diverse set of robust lo-
comotion skills for all platforms and we can reuse these skills to learn more complex tasks. Even
though the rewards are the same for all robots, the resulting skills are naturally adapted to the char-
acteristics of each platform. Our framework is sufficiently data-efficient to learn all tasks in a couple
of hours of interaction time, and we have verified some of our results in simulation with matching
experiments on real hardware. Our framework and reward definitions further minimize the need
for external state estimation and instrumentation of the learning setup by relying only on on-board
sensing. This has already made it possible to conduct experiments for some of our robots essentially
in the wild, although further work will be necessary for more complicated robots such as the biped
Florence, e.g. to ensure their safety during learning.

We believe that learning frameworks that are general enough to work across a wide range of plat-
forms with minimal adjustments and that enable more autonomous learning will be an important
step to fully reap the benefits of self-learning systems in robotics (for work similar in spirit in the
manipulation domain, see [11]).
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A Supplementary Material for Submission: Towards General and
Autonomous Learning of Core Skills - A Case Study in Locomotion

A.1 Method Details and Hyper Parameters

As defined in [6], the problem of Reinforcement Learning (RL) in a Markov Decision Process
(MDP) is considered. Let s ∈ RS be the state of the agent in the MDP M, a ∈ RA the con-
tinuous action vector and p(st+1|st,at) the probability density of transitioning to state st+1 when
executing action at in st. All actions are assumed to be sampled from a policy distribution πθ(a|s),
with parameters θ. With these definitions in place, we can define the goal of Reinforcement Learn-
ing as maximizing the sum of discounted rewards Eπ[R(τ0:∞)] = Eπ[

∑∞
t=0 γ

tr(st,at) | at ∼
π(·|st), st+1 ∼ p(·|st,at), s0 ∼ p(s)], where p(s) denotes the state visitation distribution, and we
use the short notation τt:∞ = {(st,at), . . . } to refer to the trajectory starting in state t.
The main idea of the multi-task RL setting in Scheduled Auxiliary Control (SAC-X) [6] is, that we
have a main MDPM and a set of auxiliary MDPs A = {A1, . . . ,AK}. These MDPs share the state,
observation and action space as well as the transition dynamics, but have separate reward functions
rA1(s,a), . . . , rAK

(s,a), rM(s,a). After executing an action – and transitioning in the environ-
ment – the agent now receives a scalar reward of all the auxiliary rewards and the main reward.
Given the set of reward functions we can define intention policies and their return as πθ(a|s, T ) and

Eπθ(a|s,T )

[
RT (τt:∞)

]
= Eπθ(a|s,T )

[ ∞∑
t=0

γtrT (st,at)
]
, (1)

where T ∈ T = A ∪ {M}, respectively.
Optimization of the policy is achieved by using an off-policy, model free RL approach, by trying to
find an optimal multi-task value function QT (st,at) for task T as

QT (st,at) = rT (st,at) + γEπT

[
RT (τt+1:∞)

]
, (2)

with πT = πθ(a|x, T ). Leading to the the (joint) policy improvement objective as finding
argmaxθ L(θ) where θ is the collection of all intention parameters and,

L(θ) = L(θ;M) +

|A|∑
k=1

L(θ;Ak), (3)

with L(θ; T ) =
∑
B∈T

E
p(s|B)

[
QT (s,a) | a ∼ πθ(·|s, T )

]
. (4)

To optimize the objective a gradient based approach is used. Using a parameterized predictor
Q̂πT (s,a;φ) (with parameters φ) of state-action values; i.e. Q̂πT (s,a;φ) ≈ QπT (s,a) and a replay
buffer B containing trajectories τ gathered from all policies, the policy parameters θ can be updated
by following the gradient

∇θL(θ) ≈
∑
T ∈T
τ∼B

∇θE
πθ(·|st,T )

st∈τ

[
Q̂πT (st,a;φ)− α log πθ(a|st, T )

]
, (5)

where Eπθ(·|st,T )[− log πθ(a|st, T )] corresponds to an additional (per time-step) entropy regular-
ization term (with weighting parameter α).
The second step in [6] is to find an optimal schedule during training that allows to learn the main
taskM in a data-efficient way by executing the auxiliaries to collect appropriate data and help with
exploration. To achieve this, the scheduler divides an episode in a number of subsequent sequences
and decides which intention is executed in a certain sequence. In [6] two schedulers are proposed, a
pure uniform random scheduler, called SAC-U, and an optimizing scheduler SAC-Q.

To recap, we can apply the approach from [6] in three different ways:

• In a single-task setting e.g. T = A = {AWalkForward} , where the approach simply reduces
to an off-policy RL experiment. This is used in the first set of experiments to show the
properties of the skill rewards in section (4.1 and 4.4).
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• In a multi-task setting with a set of locomotion skills, where we show that we can learn a
set of auxiliaries in parallel, e.g. T = {AWalkForward,AStandUpright,AWalkBackward} but without
using a main task and the random uniform scheduler (see section 4.2).

• Or in the full setting in section 4.3, where we have the complex and sparse
task ReachTarget and a set of auxiliaries that will help to learn it e.g. T =
{AWalkForward,AStandUpright,AWalkBackward} ∪ {MReachTarget}, using the full SAC-Q scheduler
setup in [6].

We use the same hyper parameters for all experiments. Following [6] the stochastic policy consists
of a layer of 256 hidden units with an ELU activation function, that is shared across all intentions.
After this first layer a layer norm is placed to normalize activations. The layer norm output is fed
to a second shared layer with 256 ELU units. The output of this shared stack is routed to a head
network for each of the intentions. The heads are built from a layer of 100 ELU units followed by
another layer of ELU units and a final tanh activation with twice the number of action dimension
outputs, that determine the parameters for a normal distributed policy (whose variance we allow to
vary between 0.3 and 1 by transforming the corresponding tanh output accordingly). For the critic
we use the same architecture, but with 400 units per layer in the shared part and a 300-1 head for
each intention. Training of both policy and Q-functions was performed via using a learning rate of
2 ·10−4 (and default parameters otherwise), a discount factor of 0.99 and a replay buffer size of four
million.
For each of the simulation experiments the agent interacts with the simulated environment on
episodes with a data rate that makes it comparable to experiments on a single real robot (single
actor). For all experiments we run two sequences of 400 steps with a step duration (of the simulated
physics) of 25 milliseconds. This gives us 20 seconds of simulated interaction in each of the episodes
overall. In each episode we measure the accumulated intention reward over the first sequence for
the executed intention policy. To measure the performance, we average the accumulated intention
reward for the last 10 episodes for which that specific intention was active in the first sequence.
In this way we measure the performance from the set of starting states. For each task, we report
the average number of episodes we need to have this performance measure exceed a threshold (or
convergence, whatever happens first) over three independent seeds. To be able to compare a sin-
gle reward definition over different robot platforms, we use the same task specific threshold for all
platforms. The threshold is chosen so that we see a minimal expected behaviour (average speed of
0.1 m/s for the walk tasks, 0.05 rad/s for the turn task, average height of 1 cm for the feet) without
exceeding a roll or pitch angle of±0.4 radians. We use the same procedure to report the episodes for
the real robot experiments, but we run only one experiment (not several seeds) for each experiment
in the real world. It is also important to note, that if we report a certain number of episodes for the
multi-task experiments, we report all episodes the agent interacted with environment to learn all the
tasks from scratch (not per task).

A.2 Reward Details

We assume that all robots have access to an IMU which allows them to estimate the roll and pitch
angles of the robot w.r.t. gravity. In contrast to the roll and pitch angles, which can be reliably
estimated from accelerometer and gyroscope data, the absolute yaw angle of the robot is typically
estimated based on the earth’s magnetic field, which especially indoors is often disturbed by other
electromagnetic devices (including the robot’s motors themselves) and hence unreliable. However
this does not represent a problem since basic locomotion skill should be invariant w.r.t. to the yaw
angle.
Using these measurement, this allows us to work in a virtual reference coordinate system FH that
is simultaneously aligned with the robots forward direction and gravity. Hence FH has the same
origin as the torso coordinate frame FT , has a x-y plane parallel to the worlds x-y plane, and no yaw
component w.r.t. FT . This reference frame FH allows simple computation of different rewards that
can be used over a broad range of different walker topologies. Drawing on the forward kinematics
of the walker, we represent each foot of the walker as a set of reference points (1 point for spherical
feet, 8 corner points for plate feet). Using the IMU, joint angles and forward kinematics, we can
then compute the position of these reference points j in the frame FH in each time step and for each
foot i: fHij (t).
We reduce this to a single reference point for each foot i by taking the reference point with the
smallest z coordinate: fHi (t) = fHij (t) with j = argminj(f

H
ij (t) · (0, 0, 1)). We can also define a
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translational velocity of the feet reference points as δfHi (t) =
fH
i (t)−fH

i (t−dt)
dt , where we neglect a

small change in yaw between the consecutive coordinate frames.

To make use of these quantities we make the assumption that in each time step the robot is in
contact with the ground and that the contact point is close to the lowest reference point. Using
this assumption we can make an estimate of the translational torso velocity relative to the world as
δT = −δfHa (t) with a = argmini(f

H
i (t) · (0, 0, 1)).

A.2.1 StandUpright

We first define a reward function that encourages the robot to stay upright and not to fall or lean
the torso in any direction. Using our proprioceptive definitions and measurements, we first define a
reward term to keep roll and pitch angle small. Given roll angle φ(t) and pitch angle θ(t) we define
this reward as:

rup(t) = 1− cprec(
√
φ(t)2 + θ(t)2, 0.0, 0.4) (6)

Given a general precision cost function:

cprec(v, t,m) = tanh |(v − t) ∗ w|2

w = atanh(
√
0.95)

m

(7)

In addition we want to punish movements of the torso relative to the ground. Assuming that we can
estimate the torso velocity relative to the ground in the x and y axis of FH as vxy (taken directly
from δT ), we have:

rstill(t) = −|vxy(t)| (8)
As a last component of the reward, we want to prevent the torso from rotating. Assuming that we can
measure the torso rotation rate directly from the gyroscope as gz(t), we can formulate this reward
component as a negative thresholding of another reward r:

rrot(t, r) = min(k ∗ r, r) (9)
with k = 1.0− cprecise(ĝZ(t), 0.0, 0.5) (10)

Given these definitions, we can now define the StandUpright reward as:

rStandUpright(t) = rrot(t, rstill(t) + rup(t)) (11)

A.2.2 Turn

For the turn task we expect the robot to rotate as fast as possible around the z axis of the torso while
being upright. Using the already given reward terms, we directly increase the gyroscope value gz(t)
(instead of punishing, as we did in the StandUpright reward) while still keeping the torso levelled.

rTurn(t, dir) = dir ∗ gz(t) + 0.1 ∗ rup(t) (12)
(13)

In this investigation we consider turning left and right:

rTurnLeft(t) = rTurn(t, 1.0) (14)
rTurnRight(t) = rTurn(t,−1.0) (15)

(16)

A.2.3 LiftFoot

For the task of lifting a certain foot i, LiftFooti, we define a reward, rLiftFoot(t, i), that tries to stand
still while lifting a certain foot i over a threshold of 5 cm. We use the definitions from before and
add an rlift incentive:

rLiftFoot(t, i) = rrot(t, rlift(t, i) + 0.1 ∗ rstill + 0.1 ∗ rup(t)) (17)

with rlift being a bounded shaped reward of the height of the foot relative to the stand leg:

rlift(t, i) = min(1, h) (18)

h = (fHi (t) · (0, 0, 1))− (fHa (t) · (0, 0, 1)) (19)
a being stand leg id (20)
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A.2.4 Walk

Finally we define a reward for moving in a certain direction v̂xy (with ‖v̂xy‖ = 1), relative to the
x-y-plane of FH . To compute the full reward for robust locomotion only based on robo-centric
measurements, we define a reward term for moving the torso in the desired direction: rtorso(t, v̂xy).

rtorso(t, v̂xy) = rrot(t, v̂xy · vxy) (21)
As we saw in our experiments in simulation and in the real word, adding another incentive to move
legs in the same direction helps to increase robustness and data efficiency. We define a foot swing
velocity viswing in the frame FH as:

viswing = δfHi (t) + δT (22)

If we neglect the z coordinate, we can now also define an incentive to move the feet forward:

rfeet(t, v̂xy) = rrot(t,
1

|i|
∑

v̂xy · viswing) (23)

This will cause a small incentive to move feet forward. For all leg in contact with the ground, this
will have neither a positive or negative reward. For legs moving with the torso the rewards grows.

Finally the reward for walking is defined by:

rWalk(t, v̂xy) = rtorso(t, v̂xy) + 0.5 ∗ rfeet(t, v̂xy) + 0.1 ∗ rup(t) (24)

In this investigation we use 4 instances of this reward:

rWalkForward(t) = rWalk(t, (1, 0)) (25)
rWalkBackward(t) = rWalk(t, (−1, 0)) (26)
rWalkRight(t) = rWalk(t, (0,−1)) (27)
rWalkLeft(t) = rWalk(t, (0, 1)) (28)

(29)

A.3 Action and Observation Details

As stated in the main paper, we use the position control mode of the HEBI actuation modules.
For convenience, the agent action is constrained to the range d ∈ [δmin, δmax] and transformed to
actuator position command p̂ by adding an initial position α: p̂ = α+ d for each of the actuators.

Action Unit dim range

position set point [rad] 1 [α+ δmin, α+ δmax]

Table 3: Action space for each actuator.

In table 4 we summarize the observations that are used for each of the HEBI actuation modules. The
raw values are sent with 400 Hz over a ROS node running on the robot, while the filter state of the
set-point smoothing window filter (of length ν = 5 steps) is stored in the agent. The commanded
action is computed by updating the filter state with the agent action and communicating the mean
value over the last ν steps to the actuation module.

Each actuation module provides a filtered orientation estimate, as well as acceleration and gyroscope
readings, based on it’s own IMU. We use a simple kinematics equation for each of the creatures to
compute these values for the torso, based on the estimates of all modules directly attached to it.
While already the estimate from a single modules would be sufficient, we can use multiple modules
to make it more robust.

For the observation vector of the robot, we use a history of h = 2 time steps of the roll and pitch
angle estimates to capture also the first derivative of these values in the observation. These values
are all independent of the yaw angle, that is also computed by all modules. As the yaw angle has
typically not a reliable absolute reference if we only take internal measurements of the robot, we
ignore it for the agent observations as well as for the reward calculations. To capture the rotational
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Observation Unit dim

position [rad] 1
velocity [rad/s] 1

elastic element deflection [rad] 1
elastic element deflection velocity [rad/s] 1

winding temperature [◦C] 1
housing temperature [◦C] 1

filter state [rad] ν = 5

Table 4: Observations for each actuator module.

Observation Unit dim

torso roll angle estimate [rad] h x 1
torso pitch angle estimate [rad] h x 1

feet relative positions estimate [m] h x n x |j| x 3
torso gyro values [rad/s] h x 3

Table 5: Additional robot observations.

velocities of the torso, we have access to the gyroscope readings of the fused IMUs. As we only use
robo-centric measurements, we also provide the feet points in the reference frame: fHij (t) (assuming
n feet with |j| reference points each).

Table 6 summarizes the range of different creatures with their respective observation and action
dimensions that we use in this work. For the foot reference points, we use a single point in the
center of the sphere-like foot and eight points on the corners of the plate-like foot.

Creature description act dim obs dim

Daisy6 hexapod, 6 legs 18 244
Daisy4 quadruped, 4 legs 12 166

Dog quadruped, 4 legs 12 166
Daisy3 tripod, 3 legs 9 127

Florence biped, 2 legs 12 238
Flori biped, 2 legs 12 238

FloriArms biped, 2 legs 16 282

Table 6: Basic creatures with respective action and observation space (h = 2).

A.4 Ablation: Robustness of Reward Definitions

As described in section 3.1 our general reward scheme makes some basic assumptions that may
appear to be pretty strict. For example, given the lack of contact detection, we assume that the
vertically lowest foot is always in contact with the ground. Another assumption is that this contact
point does not slip on the ground. In essence we use these assumptions to give the reward some
semantics, while we do not expect them to be fulfilled at each point in time. The central idea is that
we also expect our method to still create useful locomotion behaviours if these assumptions are not
fulfilled in each time step.

A.4.1 Uneven Terrain

Walking over rough or cluttered terrain is a challenging and important task for locomotion. Es-
pecially using only internal sensors and without any additional sensors like cameras, LIDAR or
sensorized feet (e.g. with contact sensors). We created an environment with pedestals that will have
a random height drawn uniformly between 0 and hmax in each episode (see Figure 2a), where the
assumption that the lowest foot is always in contact with the ground will inevitably be violated.
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The creature starts in the middle of the arena and has to solve the task WalkForward, which it can
only do by crawling over the pedestals. Using the same reward definitions compared to the flat
terrain experiments, the bipeds Florence and Flori are able to handle height differences of about
hmax = 1cm. As one can expect having more legs allows more robust behaviours. Daisy4 can
handle height differences of hmax = 4cm and gets stuck afterwards (mostly with it’s hind feet).
Having even more legs helps not only by allowing for simple statically stable gaits, it also help in
terms of redundant sensor information. Consequently, Daisy6 shows an even better performance
and can handle up to hmax = 20cm. The learned gate shows an interesting pattern that looks like it
would ”feel” it’s way in the blind.

A.4.2 Hybrid Locomotion

As an additional ablation to show the versatility of our approach, we changed the topology of crea-
tures in our zoo to be even more dynamic. As shown in Figure 2b we replaced the foot plates of
the bipeds Florence and Flori with passive skates (similar to inline skates). To allow for the very
same rewards and observations as before, we put 4 foot reference points on each of the wheels outer
diameter. As each foot has 2 wheels, we have a total of 8 reference points that now rotate with the
passive wheels. When we do this, we can run the very same setting as in the previous experiment
and do the same computations. The only difference is that we have to measure the passive wheel
velocities to compute the location of the reference points. To have a better comparability we don’t
put these in the observations and only use the reference points as described above. We can learn
WalkForward, WalkBackward and StandUpright with a comparable number of interactions for the
bipeds in the single and multi-task setting, while the motion of the robot looks completely different.
It learns a very dynamic skating behaviour, to stop and turn, just using the simple rewards we used
in all of the experiments.
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